Improvements for the ⁶³Cu and ⁶⁵Cu Resonance Evaluations for Criticality Safety Applications

Vladimir Sobes
Oak Ridge National Laboratory (ORNL)

Luiz Leal Institut de Radioprotection et de Sureté Nuclear (IRSN)

Overview of Major Accomplishments in the Resolved Resonance Region Evaluation of ⁶³Cu and ⁶⁵Cu

- Experimental thermal cross section measurement
- 2. Resolved resonance region extended 3 x
- Experimental capture data analyzed
- 4. High fidelity angular distribution generated

SAMMY: Computer Code for R-Matrix Analysis

- Originally developed by ORNL to evaluate data from the ORELA experimental facility
- Currently used world wide for analysis of experimental cross section data
- Based on R-Matrix theory of nuclear reactions
- Uses Bayes's method (generalized least squares) to find optimal parameter values
- Generates uncertainty data for resonance region via Bayesian update method

Experimental Data used in the New Evaluation

Reference	Energy Range (eV)	Facility	Measurement
Pandey et al.	32 – 185 000	ORELA	Trans. at 78 m
Pandey et al.	1 000 – 1 400 000	ORELA	Trans. at 78 m
Guber et al.	100 – 90 000	GELINA	Cap. at 58 m
Guber et al.	100 – 2 200 272	GELINA	Cap. at 58 m
Sobes et al.	0.01 - 0.1	MITR	Trans. at 1.2 m

Thermal Cross Section Measurement to Define External Levels

Much more definition of the negative external levels if we fit a differential cross section

Extending the Resolved Resonance Region (Total Cross Section)

Extending the Resolved Resonance Region (Capture Cross Section)

Updated Resolved Resonance Region Evaluation: Updated Capture Cross Section E > 220 keV

 From Dr. Kawano, Mini CSEWG 2015

 Corrected capture cross sections (in rev. 620 and 622 above 220 keV cross sections were underestimated)

Importance of Angular Distributions

- For radiation transport calculations, it can be crucially important to correctly understand which direction neutrons are more likely to travel after a scattering event
- NCS example: Analysis of criticality accident alarm system (CAAS) detector placement

High Fidelity Model of Angular Distributions

Differential cross section with respect to angle at E=60 keV for 63 Cu(n,els)

- Angular distributions display physical resonances
- The average treatment leads to inconsistency between angle integrated cross sections and angular distributions

$$\alpha_l(E) = \frac{2\pi}{\sigma_s(E)} \int_{-1}^{+1} \sigma_s(E, \mu) P_l(\mu) d\mu$$

•
$$P_1(\mu) = \mu$$

•
$$P_2(\mu) = 3/2\mu^2 - 1/2$$
,

Smoothing of Angular Distributions: Joint effort with Luiz Leal (IRSN)

Internalation Criteria	⁶³ Cu		⁶⁵ Cu	
Interpolation Criteria		Smoothed		Smoothed
0.1%	83 467	10 373	65 922	7 943
10%	16 673	8 568	14 119	6 805
100%	11 440	7 078	10 341	5 758

Smoothing of Angular Distributions: Joint effort with Luiz Leal (IRSN)

Interpolation Criteria		⁶³ Cu		⁶⁵ Cu	
		100%	10%	100%	
Eliminated p-waves	8 624	5 409	6 080	4 089	
Eliminated p-waves (smoothed)	3 543	2 711	2 245	1 769	
Eliminated p-wave, Reduced s-waves	5 366	2 756	3 417	1 850	
Eliminated p-wave, Reduced s-waves (smoothed)	2 442	1 762	1 555	1 151	

Benchmark Results with Varying Fidelity of Angular Distributions

Benchmark Table

Benchmark Number	ICSBEP Benchmark Name	Benchmark Number	ICSBEP Benchmark Name
1	HMF-72-01	14	IMF-20-02
2	HMF-72-03	15	IMF-20-03
3	HMF-73-01	16	IMF-20-04
4	HMF-84-06	17	IMF-20-05
5	HMF-84-18	18	IMF-20-06
6	HMF-85-01	19	IMF-20-07
7	HMF-85-02	20	IMF-22-01
		21	IMF-22-05
8	HMF-85-04	22	IMF-22-06
9	HMI-06-01	23	IMF-22-07
10	HMI-06-02	24	IMI-01-02
11	HMI-06-03	25	IMI-01-03
12	HMI-06-04	26	IMI-01-04
13	IMF-20-01	27	PMF-40-01

Overall Benchmark Results

Conclusions

- Resolved Resonance Region Evaluations of ⁶³Cu and ⁶⁵Cu:
 - 1. Experimental thermal cross section measurement
 - 2. Resolved resonance region extended 3 x
 - 3. Experimental capture data analyzed
 - 4. High fidelity angular distribution generated
- Improvements for the ⁶³Cu and ⁶⁵Cu Resonance Evaluations
 - Updated Capture Cross Section E > 220 keV
 - 2. Reduced storage requirements for high fidelity angular distributions
 - 3. Benchmarked updated evaluations

Improvements for the ⁶³Cu and ⁶⁵Cu Resonance Evaluations for Criticality Safety Applications

Vladimir Sobes
Oak Ridge National Laboratory (ORNL)

Luiz Leal Institut de Radioprotection et de Sureté Nuclear (IRSN)

Improvements for the ⁶³Cu and ⁶⁵Cu Resonance Evaluations for Criticality Safety Applications

Appendix Slides

Vladimir Sobes Oak Ridge National Laboratory (ORNL)

Luiz Leal Institut de Radioprotection et de Sureté Nuclear (IRSN)

Resolved Resonance Region Evaluations

- Evaluate experimental data with R-Matrix model of nuclear reactions to find optimal model parameters:
- Resonance Energy, E_λ
- Neutron Width, Γ_{n,λ}
- Gamma Width, Γ_{γ,λ}
 (single value for each nucleus)
- Quantum Angular Momentum (determines shape of resonance)

Prior Experimental Data

Negative External Levels

Use the best approximation of the negative external levels?

A lot of freedom in selecting external levels if we have to fit only one point

Results

ENDF/B-VII.1 (top) vs. New Evaluation (bottom) 63Cu (n,tot)

- Experimental data plotted for both is identical
- This experimental data was available for the ENDF/B-VII.1 evaluation

ENDF/B-VII.1 (top) vs. New Evaluation (bottom) 65Cu (n,tot)

- Experimental data plotted for both is identical
- This experimental data was available for the ENDF/B-VII.1 evaluation
- Note the magnitude of the uncertainty in the experimental data

ENDF/B-VII.1 Evaluation for 63Cu and 65Cu

- No capture experimental data available
- A constant background added to the capture data

ENDF/B-VII.1 (top) vs. New Evaluation (bottom) 63Cu (n,γ)

- Experimental data plotted for both is identical
- This experimental data was not available for the ENDF/B-VII.1 evaluation

ENDF/B-VII.1 (top) vs. New Evaluation (bottom) 65Cu (n,γ)

- Experimental data plotted for both is identical
- This experimental data was not available for the ENDF/B-VII.1 evaluation

New Differential Scattering Cross Sections Generated

Differential cross section with respect to angle at E=60 keV for 63 Cu(n,els)

Angular Distribution Definitions

- Angle-integrated scattering cross section
 - $-\sigma_s(E)$ A measure of the probability of a scattering event occurring for a given incident neutron energy, E.
- Differential scattering cross section with respect to angle
 - $-\sigma_s(E,\mu)$ A measure of the probability of a scattering event occurring for a given incident neutron energy, E, and resulting in the outgoing neutron traveling in a direction defined by μ. Where, μ, is the cosine of the angle between the incident and outgoing neutron.

High Fidelity Model of Angular Distributions 63 Cu (n,els) $\alpha_2(E)$ - Forward/Backward or Side-to-Side Scattering

Average Level Spacing for Different Angular Momenta

Angular Momentum	Mughabghab	ENDF/B-VII.1	New Evaluation
s-wave	722+/-47 eV	523+/-53 eV	476+/-42 eV
p-wave	404+/-22 eV	2268+/-775 eV	544+/-65 eV

65**C**u

Angular Momentum	Mughabghab	ENDF/B-VII.1	New Evaluation
s-wave	1520+/-100 eV	771+/-83 eV	535+/-42 eV
p-wave	628+/-39 eV	3132+/-360 eV	765+/-84 eV

